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Executive Summary

This project involved the analysis of a Roll Forging Machine - a machine that reduces

cross-sectional areas while simultaneously changing the shape of heated bars. The goal of this

project was to propose an effective design for the components of the roll forge and determine

which component would be the first to fail. The main machine components are identified to be

the bearings, rollers, and gears. Assumptions and calculations were done based on the main

components, and a Finite Element Analysis (FEA) simulated by Solidworks was used to validate

our results. The rollers were deemed to be the most vulnerable.

To achieve an effective design, we must use the knowledge acquired in class. The work to

reach our final conclusion was a group effort and divided equally and conquered by all.

Deflection in the rollers

Load Method Using Tables A-9 Using FEA

Point Load 3.61e-04 [m] 2.67e-04 [m]

Distributed Load 2.52e-04 [m] 1.75e-04 [m]

Tabulated Speed, Torque, and Power for gears

Gears Speed Torque Power

Pinion 30 [RPM] 27.5 [kN*m] 825 [kW]

Compound 65.828 [RPM] 58.895 [kN*m] 3876.94 [kW]

Table for Safety factors

Static Failure Fatigue Failure

4.66 1.2
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1 Introduction

Roll forging is a process used to pre-form a workpiece. Pre-forming is the process of

redistributing the mass of the workpiece before closed die forging. The machine must be able to

pre-form roll forging without generating a large volume of flash and plastic deformation. There

are two types of roll forging processes: Longitudinal and Cross Roll Forging. The machine is

configured for longitudinal roll forging where the workpiece passes through the rollers

tangentially.

In figure 1, a Russian patent of a similar roll forging machine was used to make our

assumptions about the process. Additionally, we were given a simplified CAD model of the

machine in figure 2. The parts and their dimensions were used in our analysis. Furthermore, a

research paper titled Cross Wedge Rolling and Forging Rolls As Additional Devices in closed die

forging was used to make assumptions about the peak torque and peak radial loads generated and

the material of components for the roll forging machine.

Figure 1. Patent drawing of roll forging machine with labels.
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Figure 2. Simplified CAD machine design details (dimensions are in mm)
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2 Roller Analysis

Figure 3. Front view of the machine with additional details (dimensions are in mm)

In figure 3, a closer look at the front of the machine is shown. Highlighted in green in the

gear housing where the gears are located. The blue highlights represent the rollers of the roll

forging machine, and the yellow sections at the ends of the rollers are the bearings. The rollers

are fixed to the gear system and are held in place and allowed to rotate by the bearings. During

operation, the rollers will face an equal and opposite force from the workpiece as it passes

through. The roller can experience force from the workpiece in two different cases: as a point

force or a uniformly distributed force. In the following section, both cases of deflection in the

rollers are found analytically and through an FEA simulation by Solidworks. It should be noted

that the analytical deflection considered the gears on the same axis of the roller to play a role in

the total deflection found. On the other hand, the FEA model only considered the roller.

In the FEA Analysis, the best-case scenario was studied. The roller was fixed at opposite faces

and the force was applied as a point or distributed load. This simplification was chosen to

compare values. On the other hand, analytical calculations acknowledged the slight changes of

total load by the gears. In reality, the gears contribute to the torque of the roller, which was not

accounted for in the SolidWorks simulation.

The material chosen for the rollers was Alloy Steel SS, with properties larger than a

standard material undergoing the roll forging process. The Ultimate Yield Strength, and Elastic

Modulus were compared using SolidWorks material properties and MatWeb.
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2.1 Analytical calculations for reaction forces at the bearings

Figure 4a. Free body diagram and S-M                                  Figure 4b. Free body diagram and S-M

diagrams of the top roller for forces in the                             diagrams of the top roller for forces in the

Z direction. (Not scaled)                                                         Y direction. (Not scaled)
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Figure 4c. Free body diagram and S-M                                   Figure 4d. Free body diagram and S-M

diagrams of the bottom roller for forces in the                        diagrams of the bottom roller for forces in

the Z direction. (Not scaled)                                                     Y direction. (Not scaled)

Calculations:

Figure 4a - Forces of the top roller in the ZX plane

𝑇 = 𝐹
𝑧1

(
𝑑

1

2 )

𝑇 = 𝐹
𝑧2

(
𝑑

2

2 )

The peak torsion is 25.7 kN*m is given.

The diameter of G1 is given to be 0.88m

The diameter of G2 is given to be 0.396m

𝐹
𝑧1

= 58. 44𝑘𝑁 
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𝐹
𝑧2

= 129. 8𝑘𝑁 

It is assumed that the forces at the two bearings are equal, allowing for equilibrium equations to

be used for the X-Z plane.

Σ𝐹
𝑧

= 0

𝐹
𝑧1

− 𝐹
𝑧2

+ 2𝐹
𝑧3

= 0

𝐹
𝑧3

= 𝐹
𝑧4

= 35. 68𝑘𝑁

Figure 4b - Forces of the top roller in the XY plane

It is assumed that the Y forces on G1 are zero since the components attached to it are being

ignored due to lack of knowledge of these components (the fly-wheel, pulley, motor, and G10).

Now was calculated using the relationship between radial and tangential forces.𝐹
𝑦2

It is assumed that the pressure angle, .α 𝑖𝑠 20◦

𝐹
𝑦2

= 𝐹
𝑧2

𝑡𝑎𝑛(α)

𝐹
𝑦2

= 23. 621𝑘𝑁

It is assumed that the forces at the two bearings are equal, allowing for equilibrium equations to

be used for the X-Y plane.

Σ𝐹
𝑦

= 0

− 𝐹
𝑦2

+ 𝐹
𝑟

− 2𝐹
𝑦3

= 0

is the peak radial force given of 1410 kN, which was assumed to only act in the halfway point𝐹
𝑟

between the two bearings.

𝐹
𝑦3

= 𝐹
𝑦4

= 693. 1895 𝑘𝑁

Figure 4c - Forces of the bottom roller in the ZX plane

𝑇 = 𝐹
𝑧5

(
𝑑

1

2 )

The peak torsion given is 25.7 kN*m.

The diameter of G3 is given to be 0.88m.

𝐹
𝑧5

= 58. 44𝑘𝑁 
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It is assumed that the forces at the two bearings are equal, allowing us to do equilibrium

equations for the X-Z plane.

Σ𝐹
𝑧

= 0

𝐹
𝑧5

+ 2𝐹
𝑧6

= 0

𝐹
𝑧6

= 𝐹
𝑧7

= 29. 20𝑘𝑁

Figure 4d - Forces of the bottom roller in the XY plane

The two gears of the bottom roller are assumed to be one, G3. Since the bottom roller

experiences the same forces in the Y-direction as the top roller, no further calculations are

needed.

𝐹
𝑦5

=𝐹
𝑦2

=23. 621𝑘𝑁

𝐹
𝑦6

=𝐹
𝑦3

= 693. 1895 𝑘𝑁

Peak Radial =𝐹
𝑟

=  1410 𝑘𝑁

𝐹
𝑦7

= 𝐹
𝑦4

= 693. 1895 𝑘𝑁

It is evident that the forces in the Y-direction are the highest, meaning they are the ones that can

cause the most damage. Therefore, it was decided to focus on the X-Y plane in order to proceed

with the analysis. From here, an approximation of the moment diagrams were drawn, using the

dimensions provided. Again, since the forces in the Y-direction are the same magnitude but

opposite directions for the top and bottom roller, we can use a one moment diagram to determine

the peak moment.

It is noted that the results obtained for moment are not ones that allow us to obtain a perfect

moment diagram, however, this is reasonable because of all the assumptions that have been

made. Additionally, it has the general shape one would expect given most of the forces act on the

bearings which are the same distance apart from the peak radial force. Based on this work

cohesively and that observed through the presentations other groups in the class gave, it is

concluded this was a correct approach.
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Figure 4b - Moments of the top roller in the XY plane

Moment acting on G1 is 0, due to there being no forces in the Y direction here.

Moment acting on G2 = 2409.24 kN*mm𝐹
𝑦2

102𝑚𝑚 =  

Moment acting on B1 = 237,551 kN*mm(𝐹
𝑦2

+ 𝐹
𝑦3

) 662.8𝑚𝑚
2  =  

Moment acting on B2 = 229,723 kN*mm𝐹
𝑟

− (𝐹
𝑦2

+ 𝐹
𝑦3

) 662.8𝑚𝑚
2  =  

Again, these moment calculations do not result in a perfect moment diagram, however, it is

believed such fault is not significant, as many other groups assumed the moment diagrams to be

that of just the bearings. These are reasonable assumptions and the calculations have proved that

forces related to gears are not significant in comparison to forces on the roller and on bearings.

2.2 Two Case Analysis for deflection

Introduction

In order to estimate the deflection of the roller at the bearing locations, superposition was

used. Realistically, the bearing experiences a radial load in the region where the bearing is

located. Using table A-9, a reaction force at the outer ends of the bearing was used to calculate

the deflection halfway the length of the bearing. Similarly, a reaction force at the center of the

bearing length was used to calculate the deflection of the remaining length. Both point-load

(worst-case scenario) and distributed load were calculated. These values were then compared to

the deflection found using a SolidWorks simulation. In both approaches, analytical and

simulation, the deflection was found to have a magnitude of -4. The deflection was not a major

concern in the design of the Roll Forging Machine.

Tables A-9

Properties:

𝑟 = 0. 16 𝑚

𝑙 = 1. 0868 𝑚

𝑆
𝑈𝑇

= 723. 826 𝑀𝑃𝑎

𝑆
𝑦

= 620 𝑀𝑃𝑎
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𝐸 = 210, 000 𝑀𝑃𝑎

𝐼 = Π𝑑4

64 = Π(0.26)4

64 = 2. 243 · 10−4 𝑘𝑔

𝑚2

Point load:

To calculate total deflection at the bearing location, assuming that the reaction force behaves

radially, a further simplification was necessary. The deflection halfway across the bearing

location was calculated using a reaction force acting at the extreme outer edges, and a second

calculation was done at the center of the bearing. Realistically, the reaction force would be

distributed across the entire length. Assuming point reaction forces at the two locations chosen

would also be a worst-case scenario.

𝑅
𝐴

= 𝑅
𝐵

= 𝐹
2 = 1.41 [𝑀𝑁]

2 = 705 𝑘𝑁

𝑦
𝐴𝐵

= 𝐹𝑥
48𝐸𝐼 (4𝑥2 − 3𝑙2)
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θ
𝐴𝐵

= 𝑑𝑦
𝑑𝑥 = 𝐹

𝐸𝐼 ( 𝑥2

4 − 𝑙2

16 )

𝑦
1

= 1.41·106𝑥

48(2.1·1011)(2.24·10−4)
[4𝑥2 − 3(1. 0868)2] = 1.41·106(.106)

48(2.1·1011)(2.24·10−4)
[4(. 106)2 − 3(1. 0868)2]

𝑦
1

=− 2. 31 · 10−4𝑚

θ
1

=−. 002044 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑦
2

= 1.41·106𝑥

48(2.1·1011)(2.24·10−4)
[4𝑥2 − 3(. 8748)2] = 1.41·106(.106)

48(2.1·1011)(2.24·10−4)
[4(. 106)2 − 3(. 8748)2]

𝑦
2

=− 1. 298 · 10−4𝑚

θ
2

=−. 001265 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑦
𝑡𝑜𝑡𝑎𝑙

= 𝑦
1

+ 𝑦
2

=  − 3. 6078 · 10−4𝑚

θ
𝑡𝑜𝑡𝑎𝑙

= θ
1

+ θ
2

=−. 002477 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

Distributed load:

As was done with a point load above, the deflection at the bearings was calculated assuming that

the reaction forces act at the far edge of the bearing and at the center.
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𝑅
𝐴

= 𝑅
𝐵

= 𝑤𝑙
2 = 1.41·106(1.0868)

2 = 766194 𝑁

𝑦
𝐴𝐵

= 𝑤𝑥
24𝐸𝐼 (2𝑙𝑥2 − 𝑥3 − 𝑙3)

θ
𝐴𝐵

= 𝑑𝑦
𝑑𝑥 = 𝑤

24𝐸𝐼 (6𝑙𝑥2 − 4𝑥3 − 𝑙3)

𝑦
1

= 1.41·106(.106)

24(2.1·1011)(2.24·10−4)
(2(1. 0868)(. 106)2 − (. 106)3 − (1. 0868)3)

𝑦
1

=  − 1. 66 · 10−4𝑚

θ
1

=−. 001517 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

𝑦
2

= 1.41·106(.106)

24(2.1·1011)(2.24·10−4)
(2(. 8748)(. 106)2 − (. 106)3 − (. 8748)3)
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𝑦
2

=  − 8. 606 · 10−5𝑚

θ
2

=− 7. 68 · 10−4 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑦
𝑡𝑜𝑡𝑎𝑙

= 𝑦
1

+ 𝑦
2

=  − 2. 521 · 10−4𝑚

θ
𝑡𝑜𝑡𝑎𝑙

= θ
1

+ θ
2

=−. 001217 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

Ranges (y is positive downward):

2.521e-04 [m]< total deflection< 3.608e-04 [m]

.001717 [radians]<total slope<.00247 [radians]

SolidWorks

A simple Alloy Steel (SS) cylinder was created on SolidWorks to mimic the roller in the

Roll Forge Machine. Two scenarios, a worst-case scenario in which the force was applied to a

single point, and a best-case in which the force was evenly distributed. In both cases, it was

assumed that the roller was fixed at opposite ends and that the only causes of deflection were the

applied force and a slight deflect due to reaction forces. Due to symmetry in geometry and values

of forces applied, it was assumed that both regions in which a roller bearing would be placed

would experience the same deflection. Neither of the cases yielded, but there was significantly

more stress with a point load in the point over which the force was applied, which would of

course be a worst-case scenario.

Figure 5. Simulation of a roller with an applied point load.
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Figure 6. Simulation of a roller with a distributed load.

1.75e-04 [m]< total deflection< 2.67e-04 [m]

2.3 Roller Static and Fatigue Failure

Introduction

Of all the roll forging machine components, the rollers were put through the most

extreme loading conditions and thus most likely to fail. To evaluate the roller’s potential for

failure, the first step was identifying the loads that the roller would experience during the

longitudinal rolling process. The key loading conditions for the rollers are the normal stress in

bending and shear stress in torsion on the end where the gears are located. The normal stress in

bending was selected due to the peak moment on the roller that was generated by the gears to

rotate both rollers. The shear stress in torsion was selected given the torsion on the roller

generated by the gears and thus expected to be significant.

Choosing the instant when the system is at equilibrium, the max moments and torsions

were determined using the V-M diagrams we generated based on our FBD diagram of the

system.

Static Failure

Having described the FBD diagram analysis of the system, we can now determine a

factor of safety guarding against static failure. Through FEA, the center of the rollers was
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determined to be the location of most stress, because that is where the material that is being

rolled forged is pushed through. The bending moment is maxed at the center of the roller base on

the VM diagram for the XY plane. The bending moment at this location is a serious concern as

this is the location where the bending moment is maximized. Using this reasoning, a stress

element was selected for failure analysis at the center of the roller.

Figure 7. Location of stress element

As mentioned earlier, the primary loading conditions that are evaluated for the rollers are

the normal stress in bending and the shear stress in torsion. The moment used for calculating the

maximum bending normal stress is the max moment that is generated for each pass. The torsion

used to calculate the torsional stress is being assumed as the max torque being generated during

each pass for the performance.

σ
𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

 =  𝑀𝑐
𝐼  = (229,660𝑘𝑁)(32 * 103)

 π(260𝑚𝑚)3  = 133. 1 𝑀𝑃𝑎  

7.45 MPaτ
𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

=  𝑇𝑟
𝐽 = (25.7𝑘𝑁*𝑚)(.26/2)𝑚*103

(Π(.262)/32)
 =   

Based on the calculation, the torsional stress appears to be negligible since it is

significantly smaller than the bending stress magnitude. This result is surprising given that it’s

the peak torque of the gears exerted on the rollers that give the force to create the preform. For
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the critical stress element, normal stress is what is causing compression of the element along the

axis of the rollers while torsional stress is what causes the twisting of the element along with the

rotation of the rollers.

Figure 7a. labeled critical stress element

Using Distortion- Energy theory, a factor of safety guarding against static failure can be

determined by employing Langer’s First Cycle Yield criteria and the Von Mises stress criteria.

Already assumed material choice in the FEA section.

σ'
𝑚𝑎𝑥 

 =  (σ2
𝑥 

 −  σ
𝑋

σ
𝑦
 +   3τ2

𝑥𝑦 
)1/2 =  ((133. 09)2 − (0) +  (3)(7. 45)2)1/2 = 133. 7 𝑀𝑃𝑎

η =
𝑆

𝑦
 

σ'
𝑚𝑎𝑥 

= 620 𝑀𝑃𝑎
133.7

 
𝑀𝑃𝑎 =   4. 66 

The factor of safety computed is greater than 1, indicating that no yielding occurs at this element

of the roller. This may not be the case and in a real-life instance, could lead to instant failure of

the machine entirely.  What likely would have happened is that the model described was not a

good representation of the roll forging machine.

Fatigue Failure

Since the safety factor for static failure is significantly greater than 1, it would be wise to

check if failure is due to fatigue for the rollers. The roll forging machine is expected to operate

over the course of many years for multiple hours a day. The stresses for the rollers make them
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susceptible to fatigue failure over time. To determine a factor of safety guarding against failure

due to fatigue we used the Stress Life Method.

When obtaining alternating stress, for the Goodman Approach, we are able to haveσ
𝑎
' ,

be zero given the nature of the motion of the Hot Roller. Additionally, we are able to haveτ
𝑎

σ
𝑚

be zero when calculating mean stress Lastly, when finding the maximum stress, , weσ'
𝑚

. σ
𝑚𝑎𝑥
'

were able to set both, and as zero.τ
𝑎

σ
𝑚

σ
𝑎,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

 =  𝑀𝑐
𝐼  = (229,660𝑘𝑁)(32 * 103)

 π(260𝑚𝑚)3  =   133. 1 𝑀𝑃𝑎 

0σ
𝑚,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

 =  𝑀𝑐
𝐼  =  

τ
𝑎, 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

=  𝑇𝑟
𝐽 = 0  

τ
𝑚, 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

=  𝑇𝑟
𝐽 = (25.7𝑘𝑁*𝑚)(.26/2)𝑚*103

(Π(.262)/32)
 = 7. 45 𝑀𝑃𝑎  

The expressions above can be rewritten to find the max alternating and max midplane

stresses using the Von Mises Criteria similar to finding static failure.

= = 12.9 MPaσ'
𝑚 

 =  ((σ
𝑚,𝑏𝑒𝑛𝑑𝑖𝑛𝑔

)2 +  3 (τ
𝑚, 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

)2 )1/2  ((0)2 +  3 (τ
𝑚, 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

)2 )1/2

σ'
𝑎 

 =  ((σ
𝑎,𝑏𝑒𝑛𝑑𝑖𝑛𝑔

)2 +  3 (τ
𝑎, 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

)2 )1/2 = ((σ
𝑎,𝑏𝑒𝑛𝑑𝑖𝑛𝑔

)2 +  3 (0)2 )1/2 = 133 𝑀𝑃𝑎 

Similar to what was seen in the static failure analysis, the shear stress in torsion is

negligible compared to the normal stress in bending. The assumptions were made that the roll

forging machine was expected to run for a total cycle time of 10 seconds, for 8 hours each day

for 260 days each year at a rate of 30 RPM. These assumptions can be used to calculate the

number of stress cycles.

𝑁 =  0. 5 𝑟𝑒𝑣/𝑠 *  10 𝑠/ 𝑝𝑟𝑒𝑓𝑜𝑟𝑚 *  360 𝑝𝑟𝑒𝑓𝑜𝑟𝑚𝑠 /1ℎ *  8ℎ/𝑑  *  260𝑑 /𝑦𝑒𝑎𝑟𝑠 *  10 𝑦𝑒𝑎𝑟𝑠 

18



= 3.744 * 106 >  106

Since the number of cycles is greater than 1 million cycles used to determine the

endurance stress limit, the endurance limit is then used to calculate the factor of safety guarding

against fatigue failure. The endurance limit of the roller is calculated using the Stress-Life

approach, which determines the endurance limit based on empirical data from R.R. Moore tests,

constant amplitude load tests of carefully controlled tested specimens. The theory is employed

using the help of expressions provided in Shigley’s Mechanical Engineering Design textbook.

Using the ultimate tensile strength of the roller material, the endurance limit can be estimated

using expressions 6-8 from Shigley’s.

𝑆'
𝑒 

 =  0. 5 𝑆
𝑢𝑡  

=  361. 913 𝑀𝑃𝑎 𝑠𝑖𝑛𝑐𝑒 723. 826 𝑀𝑃𝑎 <=  1400 𝑀𝑃𝑎 

Since the roller setup differs from the R.R.Moore Tests, corrections have to be made to

the endurance limit to account for the differences. We use Marin factors to account for these

differences. Using Shigley’s, five main factors are considered: surface factor, size factor, load

factor, temperature factor, and reliability factor.

Given the geometry of the roller and the process that is performed, it is likely that the

roller was machined. A surface factor can then be calculated using Table 6-2 from Shigley’s.

= .79𝑘
𝑎  

=  4. 51𝑆
𝑢𝑡

−.265

To account for the diameter of the roller loaded under the combined loading condition,

expression 6-20 from Shigley’s is used to calculate the size factor. For this, it is assumed that

diameter is always very close to 10in, however, always smaller.

𝑘
𝑏  

=  . 91𝑑 −.157 =  . 63
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The roller is loaded in bending and torsion, so the load factor would simply be = 1 and𝑘
𝑐  

thus is not significant in the analysis.

The machine is expected to operate at temperatures greater than what is shown in the

table for temperature factors from Shigleys. The textbook says that if that’s the cause, the

temperature factor can be assumed to be 1.𝑘
𝑑  

=

To ensure that the rollers have a reliability of 90%, a reliability factor of .897 is𝑘
𝑒 

=

taken from Table 6-5 of Shigley’s.

Using all these Marin factors, the endurance limit can be corrected.

=  ( .79)(.63)(1)(1)(.897)( ) = 161.6 MPa𝑆
𝑒 

 =   𝑘
𝑎  

 𝑘
𝑏  

 𝑘
𝑐  

 𝑘
𝑑  

 𝑘
𝑒  

𝑆'

𝑒 
  361. 913 𝑀𝑃𝑎

Now to calculate the safety factor guarding against fatigue failure, the conservative

Goodman Line method was used.

= 1.2η = 1 

σ'
𝑚 

/𝑆
𝑢𝑡 

 + σ'
𝑎 

/𝑆
𝑒 

The factor of safety is much less than that for static failure, and using the load lines we

determined that fatigue is the failure mode.

Figure 8. Plot showing r>𝑟
𝑐𝑟𝑖𝑡
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3 Bearing Selection

Introduction

In selecting an appropriate bearing, the elements that compose a rolling bearing must be

studied: elements must fit into a specified dimension; they must be able to receive a given load,

and they must satisfy operation under specified conditions. For this design, the fatigue loading,

and material properties were studied. Thus, the chosen bearing did not take into consideration

corrosion resistance, lubrication, or cost.

The analysis of reaction forces at the bearings concluded that pure radial load was

experienced. Therefore, the bearing selection was narrowed to N and NU-type cylindrical roller

bearings (SKF). At a constant load, the life measure distribution of roller bearings is

right-skewed. In order to calculate the catalog life, which was used to determine an appropriate

bearing type, the Weibull Distribution was used. Shafts generally have two bearings and often

these bearings are different. However, in this design, it was assumed that both bearings in each

roller were identical for simplification purposes. Figure 9b shows a range of possible bearing

options from a manufacturer.

Proper lubrication, maintenance, and reasonable operating temperatures would act as

mitigating factors for a bearing’s failure. These properties were not included in the bearing

selection but would serve as an additional effort to reduce cycles until metal fatigue.

𝐶
10

= 𝑎
𝑓
𝐹

𝐷
[

𝑥
𝐷

𝑥
0
+(θ−𝑥

0
)[𝑙𝑛(1/𝑅

𝐷
)]1/𝑏 ]1/𝑎

𝑥
𝐷

=
𝐿

𝐷

𝐿
10

= (2080)(30)(60)

106 = 3. 744

Since we are assuming a rating life of revolutions, Weibull Parameters were compared to106 

those given in Table 11-6 in Shigley’s Mechanical Engineering Design (Budynas, p.63 ).
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Figure 9a. Rating life and Weibull Parameters

𝐶
10

= 𝑎
𝑓
𝐹

𝐷
[

𝑥
𝐷

𝑥
0
+(θ−𝑥

0
)[𝑙𝑛(1/𝑅

𝐷
)]1/𝑏 ]1/𝑎 = 1. 2(705 [𝑘𝑁])[

3.744

0.02+4.439(𝑙𝑛(1/0.9))1/1.483 ]3/10 = 1317𝑘𝑁

Figure 9b. SKF bearings
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Table 1. Specifications of spherical thrust roller bearings

4 Gear System Analysis

Figure 10. Gear System and Identification

The roll forging machine has a gear system that allows the rollers to rotate at a constant

rate. Figure 10 shows the gear system from the right of the machine with its housing removed.

Beside the figure of the gear system a redrawn version is shown that highlights the gears that are
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being analyzed. There are four gears identified, starting from gear 2. Gear 3 is a compound gear

that is driven by gear 2, and gear 4 is attached to gear 3. Gear 5 is driven by gear 4.

In order to tabulate the speed, torque, and power of the gears, we must first make

assumptions about the gears. Gear 2 meshes with the compound gear, but since it can be

simplified to the motor input, otherwise what drives the gear system in the first place, gear 2 can

be ignored in finding speed, torque, and power. Excluding gear 2 leaves only gear 3, 4, and 5.

The rotations per minute and peak torque are given for the roller, and since the rollers are

connected to gears 4 and 5, those gears will rotate at the same speed and experience the same

peak torque. We decided to use peak torque in the calculations since the torque will rarely exceed

the peak torque which ensures that the gears will rarely fail. Once we have an understanding of

how the gears work, we can apply the proper gear proportions to find the related speed, torque,

and power for each gear. Proportions such as:

𝑉 = 𝑟⍵

The above related the velocity of the gears to the radius and the angular velocity or in our case

the rotations per minute. Another proportion that related torque in the gears:

𝑇 = 𝑟𝑤
𝑡

The torque equation relates the transmitted load and the radius. During calculations, we assumed

that the transmitted load experienced by all gears is the same allowing, the torque to vary based

on the radius of the gear. Below is a table that compiles the speed, torque and power of the

relevant gears.

To find the overall train value of the gear system, all gears were considered including

gear 2. The train value was found to be .455 by using the ratio of the speed of the gears that

drove over gears that were driven. Since gears 4 and 5 have the same speed, they will cancel out.

𝑒 = (𝑛
5
/𝑛

4
)(𝑛

3
/𝑛

2
)

𝑒 = (65. 828/30) =. 455
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Gears Speed Torque Power

Pinion 30 [RPM] 27.5 [kN*m] 825 [kW]

Compound 65.828 [RPM] 58.895 [kN*m] 3876.94 [kW]

Table 1. Speed, Torque, and Power of each gear

As shown in the table above, the power generated by the smaller gear is less than that of

the larger gear. We want to perform an in-depth analysis on the wear and fatigue potential for the

gear that experiences the greatest stress. Using the oversimplified approach for wear and bending

for gears, we can determine which gear experiences the greatest stress, and thus evaluate failure

that is significant for the specific gear.

In order to even use the oversimplified approach, assumptions need to be made about the

number of teeth for the gears. Assuming that spur gears are commonly used for processes such as

longitudinal roll forging, we can assume that the pressure angle will be 20 degrees. Assuming

that circular pitch is equal to the circumference of the gear divided by the number of teeth, we

can rewrite this to find the number of teeth. We can use similar proportions to find speeds to find

the number of teeth for smaller and larger gears. The calculated number of teeth for the pinions

was 18 teeth, and for the compound gear it was 40 teeth.

Figure 11. Figure of Tooth Profile for a Gear
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Now we can move on to solving the wear and bending failure for each gear. To do this we

will use the AGMA approach and apply it to each gear. We will find the allowed stress for each

gear, calculate the transmitted load, and then the horsepower generated by each gear depending

on the failure criteria. The gear that generates the least amount of horsepower is the gear of most

concern.

Figure 12. AGMA formulas for allowable stress

We need to make some additional assumptions in order to use AGMA. Face width (F)

for spur gears is assumed to be a reasonable value between the range of 3 times the pitch

diameter and 5 times the pitch diameter. We are assuming a Face width of 4 times the pitch

diameter for the pinion gears and the compound gear.

𝐹(𝑝𝑖𝑛𝑖𝑜𝑛) =  4 *  396 * 10−3 =  . 069 𝑚

𝐹(𝑝𝑖𝑛𝑖𝑜𝑛) =  4 *  880 * 10−3 =  . 1536 𝑚

Modulo (m)  should be the same for both gears, in order for them to mesh, and it can be

calculated by dividing the diameter of the gear by the number of teeth, .𝑚 =  . 022

The velocity (c) of the gears can be calculated using the ( ) rpm tabulated above and the (η

) diameter of the respective gear.𝑑,  𝐷
𝑝
 , 𝑃

𝑑
 

60 s/m = (𝑉(𝑝𝑖𝑛𝑖𝑜𝑛) =  π𝑑η ÷ π(396 *  10−3)(30 𝑅𝑃𝑀) ÷ 60 =  . 62 𝑚/𝑠

60 s/m = (𝑉(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑) =  π𝑑η ÷ π(880 *  10−3)(65. 828 𝑅𝑃𝑀) ÷ 60 
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=  3. 03  𝑚/𝑠

For the elastic coefficient for the wear approach, it was assumed that both gears would be

of steel material since this is common for roll forging machines, so ( ) is assumed to = 191𝐶
𝑃

MPa using the table below from Shigley’s.

Figure 13. Table from Shigley’s for determining the Elastic coefficient.

For Brinell hardness, we assumed that so long as it’s under 400, since that isn’t

recommended for producing spur gears, and above the Brinell hardness of the material is 197, we

chose a reasonable 350 as our Brinell hardness.

Since spur gears are used in the mechanism as pinion and compound gear, and that the

material is steel, we chose a reliability factor of ( ).𝐾
𝑅

=  . 99 

For selecting the value for stress number for both bending and wear, grade 1 was the

acceptable line to use because we don’t expect the gears to be doing incredibly precise processes

aside from rotating the rollers. for bending was calculated using the Brinell hardness and the𝑆
𝑡
 

respective equation for Grade 1. The same process was applied for calculating for wear.𝑆
𝑐
 

= .533𝑆
𝑡
 𝐻

𝑏
+  833 𝑀𝑃𝑎 =   . 533(350) +  833 𝑀𝑃𝑎 =  274. 85𝑀𝑃𝑎
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𝑆
𝑐
 =  2. 22𝐻

𝑏
 +  200 𝑀𝑃𝑎 =  2. 22(350) +  200𝑀𝑃𝑎 =  977 𝑀𝑃𝑎

, stress cycle factor, and stress life cycle factor can all be calculated using N, the𝑌
𝑁

 𝑍
𝑁

number of cycles, and the figures shown below from Shigley’s. Formulas based on the Brinell

hardness and number of cycles can be used to find the factors.

Figure 14. Table from Shigley’s for determining , stress cycle factor, and stress life𝑌
𝑁

 𝑍
𝑁

 

cycle factor

𝑌
𝑁

  =  6. 151𝑁−.1192 =  6. 151(3. 744 *  106)−.1192 =  1. 01

𝑍
𝑁

 =  2. 466𝑁−.056 =  (2. 466)(3. 744 * 106)−.056 =  1. 057  

For both bending and wear, for both gears we assumed that an additional safety factor

wasn’t needed to account for failure, so . Since the material temperature exceeds𝑆
𝐹
 =  𝑆

𝐻
 =  1

the values in the figure shown below taken from Stock Drive Products, we assumed  𝐾
𝑇
 =. 1
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Figure 15. Table from Stock Drive Products for determining the temperature factor 𝐾
𝑇

For the pinion gear, the hardness ratio factor is assumed as based on Shigley’s𝐶
𝐻

 =. 1

and since we’ve assumed the same Brinell Hardness for the compound gear also, the same

hardness ratio factor can be applied to it also.

Now we can calculate the allowable wear and bending stress for the compound gear and

for both pinion gears.

)σ
𝑏

𝑎𝑙𝑙𝑜𝑤 = 𝑆
𝑇
𝑌

𝑁
 ÷ 𝑆

𝐹
𝐾

𝑇
𝐾

𝑅
 =  (274. 85𝑀𝑃𝑎)(1. 01 ÷ (1)(. 1)(1) =

2775. 99 𝑀𝑃𝑎

)(1)σ
𝐶

𝑎𝑙𝑙𝑜𝑤 = 𝑆
𝐶
𝑍

𝑁
𝐶

𝐻
÷ 𝑆

𝐻
𝐾

𝑇
𝐾

𝑅
 =  ( 977 𝑀𝑃𝑎)(1. 056 ÷ (1)(. 1)(1) =

10317. 12 𝑀𝑃𝑎

With the allowable stress values calculated, we can now move on to finding the

transmitted load using the formulas shown below.
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Figure 16. Formulas from Shigley’s for calculating the transmitted load for bending and

wear of gear

We need to make additional assumptions about unknown factors in order to find the

transmitted loads.

The overload factor, was assumed to be = 1.75 based on the table below from𝐾
𝑜
 ,  

Shigley’s. The machine will generate moderate shock due to the preforming of the dies onto the

material, in addition to the medium shock from the motor that powers the gears.

Figure 17. Table from Shigley’s for Overload Factor 𝐾
𝑜

The geometry factor was determined using the figure below from Shigley’s. The pinion𝐽 

gear would be an 18 teeth gear driving the 40 teeth gear, . The compound𝐽(𝑝𝑖𝑛𝑖𝑜𝑛) =  . 32 

gear would be a 40 teeth gear driving the 18 teeth gear, .𝐽(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑) =  . 33 
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Figure 18. Table from Shigley’s for Geometry Factor 𝐽

The pitting resistance geometry factor was found using the formulas below for internal𝐼 

gears, where 𝑚
𝐺

(𝑠𝑝𝑒𝑒𝑑 𝑟𝑎𝑡𝑖𝑜) = 𝑑
𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

÷  𝑑
𝑝𝑖𝑛𝑖𝑜𝑛 

=   2. 2  𝑎𝑛𝑑 ϕ
𝑡
 =  20 𝑑𝑒𝑔𝑟𝑒𝑒𝑠.  

Figure 19. Formula from Shigley’s for Pitting Resistance Geometry Factor 𝐼

=𝐼 [𝑐𝑜𝑠(20)𝑠𝑖𝑛(20) ÷  2(2. 2)] × [2. 2 ÷  (2. 2 −  1)] =  . 13

The size factor was assumed to be equivalent to 1 according to Shigley’s because we𝐾
𝑠
 

assumed the gears had no nonuniformity relating to tooth size, the diameter of the part, face

width, and additional factors mentioned in Shigley’s.

The load distribution factor was assumed to be 1 based on Shigley’s as we𝐾
𝑚

 𝑎𝑛𝑑 𝐾
𝐻

 

can’t use it since the face widths of both gears is less than 40 inches.𝐹
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The rim thickness factor was assumed to be 1 based on Shigley’s since the rim 𝐾
𝑏

thickness of the gears we felt was sufficient for the longitudinal roll forging process.

The surface condition factor was assumed to be 1 based on Shigley’s since that is the 𝐶
𝐹

specification for spur gears.

The dynamic factor is calculated using the formulas below from Shigley’s. is 𝐾
𝑉

 𝑄
𝑣
  

assumed to be equal to 9, as we have assumed that the gears are produced on a machining mill,

thus are of fairly precise quality.

Figure 20. Formula from Shigley’s for Dynamic Factor

=𝐾
𝑉

 [(𝐴 + 200𝑉) ÷ 𝐴] 
𝐵

B = . 25 (12 − 𝑄
𝑣
)2/3 =  . 25 (12 −  9)2/3 =  . 52 

A = 50 + 56(1-B) = 50 - 56(1-.52) = 76.88

= = =𝐾
𝑉

(𝑝𝑖𝑛𝑖𝑜𝑛) [(𝐴 + 200𝑉) ÷ 𝐴] 
𝐵

[(76. 88 + 200 *  . 62 ) ÷ 76. 88] 
.52

1.07

= = =𝐾
𝑉

(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑) [(𝐴 + 200𝑉) ÷ 𝐴] 
𝐵

[76. 88 + 200 *  3. 03 ÷ 76. 88] 
.52

5.2

Using these factors identified we can now calculate the transmitted load for the pinion

gear and the compound gear.
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𝑊𝑡(𝑝𝑖𝑛𝑖𝑜𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  σ
𝑏

𝑎𝑙𝑙𝑜𝑤 𝐹 𝐽 ÷ 𝐾
𝑜
𝐾

𝑉
𝐾

𝑠
𝑃

𝑑
𝐾

𝑚
𝐾

𝑏
 

= (2775. 99 𝑀𝑃𝑎)(. 069) (. 32) ÷ (1. 75)(1. 07)(1)(. 396)(1)(1) =  82 𝑀𝑁

𝑊𝑡(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  σ
𝑏

𝑎𝑙𝑙𝑜𝑤 𝐹 𝐽 ÷ 𝐾
𝑜
𝐾

𝑉
𝐾

𝑠
𝑃

𝑑
𝐾

𝑚
𝐾

𝑏
 

= (2775. 99 𝑀𝑃𝑎)(. 1536) (. 33) ÷ (1. 75)(5. 2)(1)(. 88)(1)(1) =  17 𝑀𝑁

𝑊𝑡(𝑝𝑖𝑛𝑖𝑜𝑛 𝑤𝑒𝑎𝑟) =  [σ
𝑐

𝑎𝑙𝑙𝑜𝑤 ÷ 𝐶
𝑝
]2𝐹𝐷

𝑝
𝐼 ÷ 𝐾

𝑜
𝐾

𝑉
𝐾

𝑠
𝐾

𝑚
𝐶

𝐹
 

=  [(10317. 12 𝑀𝑃𝑎) ÷ (191 𝑀𝑃𝑎)]2(. 069)(. 396)(. 13) ÷ (1. 75)(1. 07)(1)(1)(1)

5.53 N=  

𝑊𝑡(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑  𝑤𝑒𝑎𝑟) =  [σ
𝑐

𝑎𝑙𝑙𝑜𝑤 ÷ 𝐶
𝑝
]2𝐹𝐷

𝑝
𝐼 ÷ 𝐾

𝑜
𝐾

𝑉
𝐾

𝑠
𝐾

𝑚
𝐶

𝐹
 

=  [(10317. 12 𝑀𝑃𝑎) ÷ (191 𝑀𝑃𝑎)]2(. 1536)(. 88)(. 13) ÷ (1. 75)(5. 2)(1)(1)(1)

5.6 N=  

Now we can use the transmitted load, and compare the power transmission generated by

the gears to see which gear is limiting in the mechanism.

𝐻 =  𝑊𝑡𝑉/ 33000  

𝐻(𝑝𝑖𝑛𝑖𝑜𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  𝑊𝑡𝑉/ 33000 = (82 𝑀𝑁)(. 62)/33000 =  1540. 6 𝐻𝑃    

𝐻(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  𝑊𝑡𝑉/ 33000 = (17 𝑀𝑁)(3. 03)/33000 = 1560 𝐻𝑃  

𝐻(𝑝𝑖𝑛𝑖𝑜𝑛 𝑤𝑒𝑎𝑟) =  𝑊𝑡𝑉/ 33000 = (5. 53𝑁)(. 62)/33000 =   1. 03 *  10−4 𝐻𝑃  

𝐻(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑤𝑒𝑎𝑟) =  𝑊𝑡𝑉/ 33000 = (5. 6𝑁)(3. 03)/33000 =   5. 14 *  10−4 𝐻𝑃    

Based on this, it can be concluded that the pinion gear is the limiting gear in the

mechanism and the failure mode is wear stress. This makes sense as we would expect the gears

directly in line with the rollers to experience the greatest amount of stress in the machine.

However transmitted load calculated for both gears exceeds the max radial force that the rollers
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generate based on assumptions. Realistically this conclusion seems unlikely. It is possible that an

overly conservative estimation of torque was made for the assumptions of the gear mechanism.

5 Conclusion

This report details the design of a roll forging machine’s bearings, rollers, and gear

system. For each component of the machine, assumptions and calculations were made. For the

rollers, deflection was found analytically through tables A-9 and backed by FEA results. The

reaction forces at the bearings were also found by balancing the forces on the rollers in both the

x-y and x-z plane. Additionally, fatigue and static failure factor of safeties were analyzed for the

rollers. Bearing specifications were selected and catalog life rating was found. Gear analysis

included but was not limited to specifications of speed, torque, and power of each gear through

proper gear relations of torque and velocity. Finally gear wear and fatigue was analyzed using an

oversimplified approach. We are comparing our results with the material properties of the

material undergoing the roll forging process and Alloy Steel. To improve the machine and

minimize the chance of failure, the components can be strengthened either by using a stronger

material or increasing the size of the part itself.
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